Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.

نویسندگان

  • Peter Fechner
  • Thomas Boudier
  • Stéphanie Mangenot
  • Szymon Jaroslawski
  • James N Sturgis
  • Simon Scheuring
چکیده

AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Atomic force microscopy.

In photosynthesis, highly organized multiprotein assemblies convert sunlight into biochemical energy with high efficiency. A challenge in structural biology is to analyze such supramolecular complexes in native membranes. Atomic force microscopy (AFM) with high lateral resolution, high signal-to-noise ratio, and the possibility to nanodissect biological samples is a unique tool to investigate m...

متن کامل

Analyzing focal adhesion structure by atomic force microscopy.

Atomic force microscopy (AFM) can produce high-resolution topographic images of biological samples in physiologically relevant environments and is therefore well suited for the imaging of cellular surfaces. In this work we have investigated focal adhesion complexes by combined fluorescence microscopy and AFM. To generate high-resolution AFM topographs of focal adhesions, REF52 (rat embryo fibro...

متن کامل

Electron and atomic force microscopy of the trimeric ammonium transporter AmtB.

Escherichia coli AmtB is an archetypal member of the ammonium transporter (Amt) family, a family of proteins that are conserved in all domains of life. Reconstitution of AmtB in the presence of lipids produced large, ordered two-dimensional crystals. From these, a 12 A resolution projection map was determined by cryoelectron microscopy, and high-resolution topographs were acquired using atomic ...

متن کامل

Structural analysis of the RC-LH1 photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy

The bacterium Rhodospirillum rubrum contains a simple photosynthetic system, in which the reaction center (RC) receives energy from the light harvesting LH1 complex. We have used high-resolution atomic force microscopy (AFM) to image 2D crystals of the RCLH1 complex of R. rubrum. The AFM topographs show that the RC-LH1 complex is ~94Å in height; the RC-H subunit protrudes from the cytoplasmic f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 96 9  شماره 

صفحات  -

تاریخ انتشار 2009